# **Deformation mechanism of amorphous/nanocrystalline** multilayers thin films on polyimide substrates H. S. Huang<sup>a</sup>, M. C. Liu<sup>b</sup>, W. C. Lin<sup>c</sup>, J. C. Huang<sup>d,\*</sup> Department of Materials and Optoelectronic Science, Kaohsiung, Taiwan 804, R.O.C. Abstract

The tensile behavior of the monolithic amorphous ZrCu and crystalline Cu thin films and the ZrCu/Cu multilayered thin films in different monolayer thicknesses has been investigated. The morphology of as-deposited thin film is composed of sphere domains, and between the domains would be stress-concentrated. The cracks vertical to the loading direction would propagate along the domains. The tensile moduli of monolithic amorphous ZrCu and crystalline Cu thin films are closed to results extracted from micro-compression. Based on the current results for the moduli of multilayered thin films obtained from the tensile tests, it is reliable and consistent with the theoretically rule of mixture prediction. As the monolayer thickness going down from 100 nm to 10 nm, the tensile moduli would not change too much. The ductility and maximum stress would be improved.

### **Experimental procedures**

Cutting polyimide (50 µm) into suitable size

**Cleanning polymer substrate by ultrasonic cleaning in** isopropanol for 5 minutes

Sticking the polymer substrate on holder, then put on the **0.3-mm-thick 304 stainless mask** 

Depositing ZrCu/Cu multi-layer at the thickness of 1 µm in different thickness ratio

## **Examination of film properties**



**XRD** pattern of the monolithic and multilayered thin films on the polyimide substrate.





EDS pattern of the asdeposited amorphous Zr<sub>46</sub>Cu<sub>54</sub> thin film on the silcon nitride substrate.





600

400

The schematic illustration of Young's moduli and maximum stress versus the thickness.

## Conclusions



10/10 50/50 100/100 Cu ZrCu The schematic illustration of crack distances of the deformed thin films

**Jo** 30

dista

verage

From the SEM surface morphology observation, the as-deposited thin film is smooth under low magnification, but the sphere domains can also be observed under high magnification. XRD analysis shows the multilayered thin films are composed of amorphous and crystalline metals. The tensile moduli of monolithic amorphous ZrCu and crystalline Cu thin films are close to results from nano-compression, and the multilayered thin films deducting the fitted PI curve agree well with the theoretically rule of mixture prediction. The current study demonstrates that the nanolaminate of ZrCu/Cu (50/50 nm) can reach the highest maximum stress among all samples. Besides, There is no much(?) difference in the moduli, ductility under the variant thickness condititions.